Биосинтез белков. Трансляция.


Трансляция (от лат. translatio — перевод) — термин, обозначающий в биологии такие реакции, в результате которых в рибосомах с использованием в качестве матрицы иРНК осуществляется синтез полипептидной цепи.
В процессе синтеза полипептидная цепь удлиняется в результате последовательного присоединения отдельных аминокислотных остатков. Для того чтобы понять, каким образом осуществляется образование пептидной связи между соответствующими аминокислотами, необходимо рассмотреть структуру рибосом и транспортных РНК (тРНК), участвующих с процессе трансляции.

В состав каждой рибосомы входят 2 субъединицы: большая и малая, которые могут отделяться друг от друга. В состав каждой из этих субъединиц входят рибосомная РНК и белок. Некоторые рибосомные белки являются ферментами, т.е. выполняют каталитические функции. Главная функция малой субъединицы — «расшифровка» генетической информации. Она связывает иРНК и тРНК, несущие аминокислоты. Функция большой субъединицы — образование пептидной связи между аминокислотами, которые принесены в рибосому двумя соседними молекулами тРНК.

Транспортная РНК.

Молекулы транспортных РНК невелики, в их состав входят 70-90 нуклеотидов. Функция тРНК заключается в том, чтобы в ходе процесса синтеза полипептидной цепи переносить на рибосомы определенные аминокислоты, при этом каждая аминокислота переносится соответствующей тРНК. Все молекулы тРНК могут образовывать характерную конформацию (пространственное расположение атомов в молекуле) — конформацию клеверного листа. Такая конформация молекулы тРНК возникает потому, что в ее структуре имеется значительное количество нуклеотидов (по 4-7 в одном участке), комплементарных друг другу. Внутримолекулярное спаривание таких нуклеотидов за счет образования водородных связей между комплементарными основаниями и приводит к образованию такой структуры. В вершине клеверного листа расположен триплет нуклеотидов, который комплементарен кодону иРНК, кодирующему аминокислоту. Этот триплет отличается у тРНК, переносящих различные аминокислоты, он кодирует определенную аминокислоту, именно ту, которую переносит данная тРНК. Его называют антикодоном.

Кодон - антикодон

Антикодон молекулы тРНК и кодон молекулы иРНК

В основании клеверного листа есть участок, в котором связывается аминокислота. Таким образом, получается, что молекула тРНК не только переносит определенную аминокислоту, в ее структуре есть запись о том, что она переносит именно данную аминокислоту, причем эта запись сделана на языке генетического кода.

Как уже говорилось, рибосомы способны связывать иРНК, несущую информацию об аминокислотной последовательности синтезируемого белка, тРНК, несущие аминокислоты, и, наконец, синтезируемую полипептидную цепь. Малая субъединица рибосомы связывает иРНК и тРНК, несущую первую аминокислоту полипептидной цепи (обычно это метионин), после чего происходит связывание большой субъединицы с образованием функционирующей (работающей) рибосомы. Активный центр рибосомы, где образуется пептидная связь между двумя соседними аминокислотами, устроен так, что в нем могут одновременно находиться два соседних кодона (триплета) иРНК. На первом этапе за счет взаимодействия между кодоном и антикодоном происходит связывание тРНК с иРНК. Т.к. антикодон, находящийся на тРНК, и кодон, расположенный на иРНК, комплементарны, между входящими в их состав азотистыми основаниями образуются водородные связи. На втором этапе аналогичным образом осуществляется связывание с соседним кодоном второй молекулы тРНК. Молекулы тРНК в активном центре рибосомы на этом этапе располагаются таким образом, что группа -С=О первого аминокислотного остатка, который связан с первой тРНК, оказывается вблизи от свободной аминогруппы (-NH2) аминокислотного остатка, входящего в состав второй транспортной тРНК. Таким образом, благодаря взаимодействию кодон-антикодон между последовательно расположенными кодонами иРНК и соответствующими им антикодонами тРНК рядом располагаются именно те аминокислоты, которые последовательно закодированы в иРНК.

Активный центр рибосомы

Активный центр рибосомы, в котором осуществляется образование пептидной связи между двумя соседними аминокислотами

На следующем этапе при взаимодействии свободной аминогруппы, входящей в состав аминокислотного остатка вновь пришедшей тРНК, с карбоксильной группой аминокислотного остатка первой аминокислоты, между двумя аминокислотами, прикрепленными к соответствующим тРНК, образуется пептидная связь. Реакция осуществляется путем замещения, при этом уходящей группой является молекула первой тРНК. В результате такого замещения удлинившаяся тРНК, несущая уже дипептид, оказывается связанной с рибосомой. Для прохождения данной реакции необходим фермент, который есть в составе большой субъединицы рибосомы.

На последнем этапе пептид, связанный с второй молекулой тРНК, передвигается с участка, в котором в начале цикла была связана тРНК, содержащая аминокислоту, в участок, где связывается тРНК с образующимся пептидом. Одновременно с перемещением синтезирующейся пептидной цепи происходит перемещение рибосомы вдоль иРНК, при этом в ее (рибосомы) активном центре оказывается следующий кодон иРНК, после этого события, описанные выше, повторяются. Синтез белка осуществляется с очень большой скоростью, пептид, состоящий из 100 аминокислот, синтезируется примерно за 1 минуту.

Рибосома продвигается вдоль нитевидной молекулы иРНК по мере того, как происходит сборка полипептидной цепи. На одной молекуле иРНК может одновременно находиться несколько рибосом, и каждая из них осуществляет синтез полипептидной цепи, закодированной этой тРНК, в результате чего формируются полисомы: рибосомы, нанизанные на нить иРНК. Чем дальше рибосома проходит по цепи иРНК, тем более длинный фрагмент молекулы белка будет синтезирован. Синтез белка заканчивается, когда рибосома достигнет конца молекулы иРНК, после этого рибосома с вновь синтезированным белком покидает молекулу иРНК (см. рисунок ниже). Сигнал о том, что синтез полипептидной цепи закончен, подается тремя специальными кодонами, один из которых присутствует в терминальной части молекулы иРНК. Считывание информации с молекулы иРНК возможно только в одном направлении.

Синтез белка

Процесс синтеза белка

Только что образованный конец полипептидной цепи еще во время синтеза  может связываться со специальными белками шаперонами, которые обеспечат ее правильную укладку, а затем направляется к аппарату Гольджи, откуда белок транспортируется в то место, где он будет работать. Рибосома, которая освободилась от иРНК и синтезированной полипептидной цепи, распадается на субъединицы, после чего большая субъединица, снова может связаться с малой и образовать активную рибосому, способную синтезировать новый (или тот же самый) белок.

Как я рассказывал ранее, любые процессы синтеза, в результате которых из более простых молекул образуются более сложные, осуществляются с затратой энергии. Биосинтез белка — это целая цепь реакций, протекающих с затратой энергии. Так, например, для связывания одной аминокислоты с тРНК необходима энергия двух макроэргических связей молекулы АТФ. Кроме того, при образовании одной пептидной связи используется энергия еще одной макроэргической связи. Таким образом, при образовании одной пептидной связи в молекуле белка затрачивается количество энергии, запасенное в трех макроэргических связях молекул АТФ.

Перейти к оглавлению.


You can leave a response, or trackback from your own site.

Leave a Reply