Дезоксирибонуклеиновая кислота (ДНК).


Дезоксирибонуклеиновая кислота или ДНК является носителем генетической информации. Главным образом, ДНК в клетках сосредоточена в ядре. Это основной компонент хромосом. У эукариот ДНК также обнаруживается еще в митохондриях и пластидах. ДНК состоит из мононуклеотидов, ковалентно связанных между собой, представляя собой длинный неразветвленный полимер. Мононуклеотиды, входящие в состав ДНК, состоят из  дезоксирибозы, одного из 4-х азотистых оснований (аденин, гуанин, цитозин и тимин), и остатка фосфорной кислоты. Количество этих мононуклеотидов очень велико. Например, в клетках прокариот, содержащих одну единственную хромосому, ДНК представляет собой одну макромолекулу с молекулярной массой более 2 x 109.

Мононуклеотиды одной цепи ДНК соединяются последовательно друг с другом благодаря образованию ковалентных фосфодиэфирных связей между ОН-группой дезоксирибозы одного мононуклеотида и остатком фосфорной кислоты другого. С одной стороны от образовавшегося остова одной цепи ДНК располагаются азотистые основания. Их можно сравнить, с четырьмя разными бусинками надетых на одну нить, т.к. они как бы нанизаны на сахарофосфатную цепь.

Структура ДНК и РНК

Структура ДНК и РНК

Возникает вопрос, как эта длинная полинуклеотидная цепь может кодировать программу развития клетки или даже целого организма? Ответ на этот вопрос можно получить, поняв, как образуется пространственная структура ДНК. Структура этой молекулы была расшифрована и описана Дж. Уотсоном и Ф. Криком в 1953 году.

Молекула ДНК представляет собой две параллельные нити.

Молекула ДНК представляет собой две параллельные нити.

Молекулы ДНК представляют собой две нити, которые располагаются параллельно друг другу и формируют правозакрученную спираль. Ширина этой спирали составляет около 2 нм, зато ее длина может достигать сотен тысяч нанометров. Уотсоном и Криком предложили модель ДНК, согласно которой все основания ДНК расположены внутри спирали, снаружи находится сахарофосфатный остов. Таким образом, основания одной цепи максимально сближены с основаниями другой,
поэтому между ними формируются водородные связи. Структура спирали ДНК такова, что полинуклеотидные цепи, которые входят в ее состав,  могут быть разделены только после ее раскручивания.

Благодаря максимальной сближенности двух цепей ДНК в ее составе содержится одинаковое количество  азотистых оснований одного типа (аденин и гуанин) и азотистых оснований другого типа (тимин и цитозин), т. е. справедлива формула: А+Г=Т+Ц. Это объясняется размерами азотистых оснований, а именно, длина структур, которые образуются благодаря возникновению водородной связи между парами аденин-тимин и гуанин-цитозин, приблизительно составляет 1,1 нм. Суммарные размеры этих пар соответствуют размерам внутренней части спирали ДНК. Для формирования спирали пара Ц-Т была бы слишком мала, а пара А-Г, наоборот, слишком велика. Т.е., азотистое основание первой цепи ДНК, определяет основание, которое располагается в том же самом  месте другой цепи ДНК. Строгое соответствие нуклеотидов, расположенных в молекуле ДНК в парных цепочках параллельно друг другу, назвали комплементарностью (дополнительностью). Точное воспроизведение или репликация генетической информации возможна именно благодаря этой особенности молекулы ДНК.

В ДНК биологическая информация записана таким образом, что она может в точности копироваться и передаваться клеткам-потомкам. До деления клетки в ней происходит репликация (самоудвоение) ДНК. Поскольку каждая цепь содержит последовательность нуклеотидов, комплементарную последовательности цепипартнера, то на самом деле они несут одинаковую генетическую информацию. Если разделить цепи и использовать каждую из них в качестве шаблона (матрицы)для построения второй цепи, то получится две новых идентичных цепи ДНК. Именно таким образом и происходит удвоение ДНК в клетке.

Фосфатсахарные последовательности

Фосфатсахарные последовательности

Водородные связи между азотистыми основаниями соседних цепей ДНК разрываются. Эти цепи разделяются. Затем происходит синтез двух новых молекул ДНК (дочерних) с использованием в виде матриц их родительских цепей. Эти реакции стали называть реакциями матричного синтеза.

Процесс репликации ДНК

Процесс репликации ДНК

Подробнее про репликацию ДНК можно прочесть в разделе «Репликация ДНК«.

Перейти к оглавлению.


You can leave a response, or trackback from your own site.

Leave a Reply